@article{DBLP:journals/access/SteinbachJCGB22,author={Steinbach, Markus and Jindal, Anshul and Chadha, Mohak and Gerndt, Michael and Benedict, Shajulin},title={TppFaaS: Modeling Serverless Functions Invocations via Temporal Point
Processes},journal={{IEEE} Access},volume={10},pages={9059--9084},year={2022},url={https://doi.org/10.1109/ACCESS.2022.3144078},doi={10.1109/ACCESS.2022.3144078},timestamp={Tue, 08 Feb 2022 10:41:26 +0100},biburl={https://dblp.org/rec/journals/access/SteinbachJCGB22.bib},bibsource={dblp computer science bibliography, https://dblp.org},html={https://doi.org/10.1109/ACCESS.2022.3144078},bibtex_show={true},selected={false},abbr={IEEE Access}}
2021
Soft. Prac. Exp.
Function delivery network: Extending serverless computing for heterogeneous
platforms
@article{DBLP:journals/spe/JindalGCPC21,author={Jindal, Anshul and Gerndt, Michael and Chadha, Mohak and Podolskiy, Vladimir and Chen, Pengfei},title={Function delivery network: Extending serverless computing for heterogeneous
platforms},journal={Softw. Pract. Exp.},volume={51},number={9},pages={1936--1963},year={2021},url={https://doi.org/10.1002/spe.2966},doi={10.1002/spe.2966},timestamp={Thu, 12 Aug 2021 17:51:17 +0200},biburl={https://dblp.org/rec/journals/spe/JindalGCPC21.bib},bibsource={dblp computer science bibliography, https://dblp.org},html={https://doi.org/10.1002/spe.2966},abbr={Soft. Prac. Exp.},publisher={Wiley Online Library},bibtex_show={true},selected={false}}
Conferences/Workshops
2024
CCGrid
Apodotiko: Enabling Efficient Serverless Federated Learning in Heterogeneous Environments
Chadha, Mohak,
Jensen, Alexander,
Gu, Jianfeng,
Abboud, Osama,
and Gerndt, Michael
In 2024 IEEE/ACM 24th International Symposium On Cluster, Cloud, and Internet Computing (CCGrid)
2024
@inproceedings{apodotiko,author={Chadha, Mohak and Jensen, Alexander and Gu, Jianfeng and Abboud, Osama and Gerndt, Michael},booktitle={2024 IEEE/ACM 24th International Symposium On Cluster, Cloud, and Internet Computing (CCGrid)},title={Apodotiko: Enabling Efficient Serverless Federated Learning in Heterogeneous Environments},year={2024},abbr={CCGrid},bibtex_show={true},html={https://arxiv.org/pdf/2404.14033},slides={https://drive.google.com/file/d/1A9ppuB5pJzshJWnsDWK-25So-T0V09gf/view?usp=sharing}}
SAC
Training Heterogeneous Client Models using Knowledge Distillation in Serverless Federated Learning
Chadha, Mohak,
Khera, Pulkit,
Gu, Jianfeng,
Abboud, Osama,
and Gerndt, Michael
In 2024 ACM/SIGAPP 39th Symposium On Applied Computing (SAC)
2024
@inproceedings{serverlesskd,author={Chadha, Mohak and Khera, Pulkit and Gu, Jianfeng and Abboud, Osama and Gerndt, Michael},booktitle={2024 ACM/SIGAPP 39th Symposium On Applied Computing (SAC)},title={Training Heterogeneous Client Models using Knowledge Distillation in Serverless Federated Learning},year={2024},abbr={SAC},bibtex_show={true},html={https://arxiv.org/pdf/2402.07295.pdf},slides={https://drive.google.com/file/d/1EHvq7JDXn1hhqKCl7PNV6WFWOX-3asBt/view?usp=sharing}}
SANER
gFaaS: Enabling Generic Functions in Serverless Computing
@inproceedings{gfaaS,author={Chadha, Mohak and Wieland, Paul and Gerndt, Michael},booktitle={2024 IEEE 31st International Conference on Software Analysis, Evolution and Reengineering (SANER)},title={gFaaS: Enabling Generic Functions in Serverless Computing},year={2024},abbr={SANER},bibtex_show={true},html={https://arxiv.org/abs/2401.10367},presentation={https://youtu.be/STbb6ykJFf0},selected={false}}
2023
WoSC@Middleware
GreenCourier: Carbon-Aware Scheduling for Serverless Functions
@inproceedings{greencourier,author={Chadha, Mohak and Subramanian, Thandayuthapani and Arima, Eishi and Gerndt, Michael and Schulz, Martin and Abboud, Osama},booktitle={Proceedings of the 2023 Ninth International Workshop on Serverless Computing (WoSC9)},title={GreenCourier: Carbon-Aware Scheduling for Serverless Functions},year={2023},volume={},number={},abbr={WoSC@Middleware},bibtex_show={true},html={https://arxiv.org/pdf/2310.20375.pdf},slides={https://drive.google.com/file/d/1axjiKEb-eql_yV-4Rz-_sk9oM6lWAMkX/view?usp=sharing},presentation={https://youtu.be/oAL5C5XxvOg},selected={true}}
SC-W
Sustainability in HPC: Vision and Opportunities
Chadha, Mohak,
Arima, Eishi,
Raoofy, Amir,
Gerndt, Michael,
and Schulz, Martin
In 2023 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis (SC-W)
2023
@inproceedings{greensc,author={Chadha, Mohak and Arima, Eishi and Raoofy, Amir and Gerndt, Michael and Schulz, Martin},booktitle={2023 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis (SC-W)},title={Sustainability in HPC: Vision and Opportunities},year={2023},volume={},number={},abbr={SC-W},bibtex_show={true},html={https://arxiv.org/abs/2309.13473},slides={https://drive.google.com/file/d/1WFczinac40-nphxKRq6L9AAPRikn4zpN/view?usp=sharing},selected={true}}
ICPP
FaST-GShare: Enabling Efficient Spatio-Temporal GPU Sharing in Serverless Computing for Deep Learning Inference
Gu, Jianfeng,
Zhu, Yichao,
Wang, Puxuan,
Chadha, Mohak,
and Gerndt, Michael
In 2023 52nd International Conference on Parallel Processing (ICPP)
2023
@inproceedings{faastgshare,author={Gu, Jianfeng and Zhu, Yichao and Wang, Puxuan and Chadha, Mohak and Gerndt, Michael},booktitle={2023 52nd International Conference on Parallel Processing (ICPP)},title={FaST-GShare: Enabling Efficient Spatio-Temporal GPU Sharing in Serverless Computing for Deep Learning Inference},year={2023},volume={},number={},abbr={ICPP},bibtex_show={true},html={https://arxiv.org/pdf/2309.00558.pdf}}
@inproceedings{mpiwasm,author={Chadha, Mohak and Krueger, Nils and John, Jophin and Jindal, Anshul and Gerndt, Michael and Benedict, Shajulin},booktitle={2023 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming (PPoPP)},title={Exploring the Use of WebAssembly in HPC},year={2023},volume={},number={},abbr={PPoPP},bibtex_show={true},html={https://arxiv.org/pdf/2301.03982.pdf},presentation={https://youtu.be/A6JV0JORc2A},slides={https://drive.google.com/file/d/17b4aozSNZh5OP7mWKM9wNXwlsign9AfF/view?usp=sharing},selected={true}}
2022
BigData
FedLesScan: Mitigating Stragglers in Serverless Federated Learning
@inproceedings{fedlessscan,author={Elzohairy, Mohamed and Chadha, Mohak and Jindal, Anshul and Grafberger, Andreas and Gu, Jianfeng and Gerndt, Michael and Abboud, Osama},booktitle={2022 IEEE 10th International Conference on Big Data (IEEE BigData)},title={FedLesScan: Mitigating Stragglers in Serverless Federated Learning},year={2022},volume={},number={},abbr={BigData},bibtex_show={true},html={https://arxiv.org/pdf/2211.05739.pdf},selected={true},presentation={https://youtu.be/p4JkJFKqWRg},slides={https://drive.google.com/file/d/1BFMXbfLgIM0-GAyOEl7ukQoRR1jsQRop/view?usp=sharing}}
WoSC@Middleware
Migrating from Microservices to Serverless: An IoT Platform Case Study
@inproceedings{chadhawosc,author={Chadha, Mohak and Pacyna, Victor and Jindal, Anshul and Gu, Jianfeng and Gerndt, Michael},booktitle={Proceedings of the 2022 Eight International Workshop on Serverless Computing},title={Migrating from Microservices to Serverless: An IoT Platform Case Study},year={2022},volume={},number={},abbr={WoSC@Middleware},selected={true},bibtex_show={false},html={https://arxiv.org/pdf/2210.04212.pdf},slides={https://drive.google.com/file/d/1EgvuMJeMV6xkIGrPLR50-hbvAOcnW5_L/view?usp=sharing},presentation={https://youtu.be/-CAOR7YO3c8}}
IEEE CLOUD
SLAM: SLO-Aware Memory Optimization for Serverless Applications
@inproceedings{slam,author={Safaryan, Gor and Jindal, Anshul and Chadha, Mohak and Gerndt, Michael},booktitle={2022 IEEE 15th International Conference on Cloud Computing (IEEE CLOUD)},title={SLAM: SLO-Aware Memory Optimization for Serverless Applications},year={2022},volume={},number={},abbr={IEEE CLOUD},selected={true},bibtex_show={false},doi={https://doi.org/10.1109/CLOUD55607.2022.00019},html={https://arxiv.org/pdf/2207.06183.pdf}}
SANER
Bunk8s: Enabling Easy Integration Testing of Microservices in Kubernetes
@inproceedings{bunk8s,author={Christoph, Reile and Chadha, Mohak and Hauner, Valentin and Jindal, Anshul and Hofmann, Benjamin and Gerndt, Michael},booktitle={2022 IEEE 29th International Conference on Software Analysis, Evolution and Reengineering (SANER)},title={Bunk8s: Enabling Easy Integration Testing of Microservices in Kubernetes},year={2022},volume={},number={},abbr={SANER},bibtex_show={false},doi={https://doi.org/10.1109/SANER53432.2022.00062},html={https://arxiv.org/pdf/2207.06811.pdf},presentation={https://www.youtube.com/watch?v=e8wbS25O4Bo}}
ESOCC
MAAF: Self-Adaptive Memory Optimization for Serverless Functions
@inproceedings{maaf,author={Zubko, Tetiana and Jindal, Anshul and Chadha, Mohak and Gerndt, Michael},booktitle={Service-Oriented and Cloud Computing},title={MAAF: Self-Adaptive Memory Optimization for Serverless Functions},publisher={Springer International Publishing},address={Cham},pages={137--154},year={2022},isbn={137--154},abbr={ESOCC},bibtex_show={false},doi={https://doi.org/10.1007/978-3-031-04718-3_9},html={https://www.researchgate.net/publication/359949441_MAFF_Self-adaptive_Memory_Optimization_for_Serverless_Functions}}
ICFEC
FaDO: FaaS Functions and Data Orchestrator for Multiple Serverless Edge-Cloud Clusters
@inproceedings{fado,author={Smith, Christopher and Jindal, Anshul and Chadha, Mohak and Gerndt, Michael and Benedict, Shajulin},booktitle={2022 IEEE 6th International Conference on Fog and Edge Computing (ICFEC)},title={FaDO: FaaS Functions and Data Orchestrator for Multiple Serverless Edge-Cloud Clusters},year={2022},volume={},number={},abbr={ICFEC},bibtex_show={false},doi={https://doi.org/10.1109/ICFEC54809.2022.00010},html={https://anshul-jindal.me/publication/fado/fado.pdf}}
CLOSER
Scalable Infrastructure for Workload Characterization of Cluster Traces
@inproceedings{scalableinfro,author={van Loo, Thomas and Jindal, Anshul and Benedict, Shajulin and Chadha, Mohak and Gerndt, Michael},booktitle={2022 12th International Conference on Cloud Computing and Services Science (CLOSER)},title={Scalable Infrastructure for Workload Characterization of Cluster Traces},year={2022},volume={},number={},abbr={CLOSER},bibtex_show={false},doi={https://doi.org/10.5220/0011080300003200},html={https://arxiv.org/pdf/2205.11582.pdf}}
2021
BigData
FedLess: Secure and Scalable Federated Learning Using Serverless Computing
@inproceedings{fedless,author={Grafberger, Andreas and Chadha, Mohak and Jindal, Anshul and Gu, Jianfeng and Gerndt, Michael},booktitle={2021 IEEE 9th International Conference on Big Data (IEEE BigData)},title={FedLess: Secure and Scalable Federated Learning Using Serverless Computing},year={2021},volume={},number={},abbr={BigData},bibtex_show={true},html={https://arxiv.org/pdf/2111.03396.pdf},selected={true},slides={https://drive.google.com/file/d/1lxozQ-sGKnh74VaL81_sWvbOIsFJvVNL/view?usp=sharing},presentation={https://youtu.be/qsAn5_P03k8}}
IEEE CLOUD
Architecture-Specific Performance Optimization of Compute-Intensive FaaS Functions
@inproceedings{chadhaarchitecture,author={Chadha, Mohak and Jindal, Anshul and Gerndt, Michael},booktitle={2021 IEEE 14th International Conference on Cloud Computing (IEEE CLOUD)},title={Architecture-Specific Performance Optimization of Compute-Intensive FaaS Functions},year={2021},volume={},number={},abbr={IEEE CLOUD},bibtex_show={true},doi={10.1109/CLOUD53861.2021.00062},html={https://arxiv.org/pdf/2107.10008.pdf},selected={true},slides={https://drive.google.com/file/d/19C82gShhtBER0Vb30iQW3v7_tVEthI9g/view?usp=sharing}}
IEEE/ACM UCC
Courier: Delivering Serverless Functions Within Heterogeneous FaaS Deployments
@inproceedings{jindalcourier,author={Jindal, Anshul and Frielinghaus, Julian and Chadha, Mohak and Gerndt, Michael},booktitle={2021 IEEE/ACM 14th International Conference on Utility and Cloud Computing (UCC)},title={Courier: Delivering Serverless Functions Within Heterogeneous FaaS Deployments},year={2021},volume={},number={},abbr={IEEE/ACM UCC},url={https://doi.org/10.1145/3468737.3494097},doi={10.1145/3468737.3494097},bibtex_show={true},html={https://doi.org/10.1145/3468737.3494097},selected={false}}
IC2E
DeepEdgeBench: Benchmarking Deep Neural Networks on Edge Devices
@inproceedings{deepedgebench,author={Baller, Patrick Stephan and Jindal, Anshul and Chadha, Mohak and Gerndt, Michael},booktitle={2021 IEEE 9th International Conference on Cloud Engineering (IC2E)},title={DeepEdgeBench: Benchmarking Deep Neural Networks on Edge Devices},year={2021},volume={},number={},abbr={IC2E},bibtex_show={true},doi={10.1109/IC2E52221.2021.00016},html={https://arxiv.org/pdf/2108.09457.pdf},selected={false}}
WoSC@Middleware
Towards Demystifying Intra-Function Parallelism in Serverless Computing
@inproceedings{kienerwosc,author={Kiener, Michael and Chadha, Mohak and Gerndt, Michael},booktitle={Proceedings of the 2021 Seventh International Workshop on Serverless Computing},title={Towards Demystifying Intra-Function Parallelism in Serverless Computing},year={2021},volume={},number={},abbr={WoSC@Middleware},selected={false},doi={10.1145/3493651.3493672},bibtex_show={true},html={https://dl.acm.org/doi/10.1145/3493651.3493672},presentation={https://www.youtube.com/watch?v=CUOyobcfOfo&ab_channel=MKiener},slides={https://drive.google.com/file/d/1Qet50ALeZbj955NAOHEYQqLZZ5hKd8OE/view?usp=sharing}}
CloudAM@UCC
Estimating the Capacities of Function-as-a-Service Functions
Federated learning (FL) enables resource-constrained edge devices to learn a shared
Machine Learning (ML) or Deep Neural Network (DNN) model, while keeping the training
data local and providing privacy, security, and economic benefits. However, building
a shared model for heterogeneous devices such as resource-constrained edge and cloud
makes the efficient management of FL-clients challenging. Furthermore, with the rapid
growth of FL-clients, the scaling of FL training process is also difficult.In this
paper, we propose a possible solution to these challenges: federated learning over
a combination of connected Function-as-a-Service platforms, i.e., FaaS fabric offering
a seamless way of extending FL to heterogeneous devices. Towards this, we present
FedKeeper, a tool for efficiently managing FL over FaaS fabric. We demonstrate the
functionality of FedKeeper by using three FaaS platforms through an image classification
task with a varying number of devices/clients, different stochastic optimizers, and
local computations (local epochs).
@inproceedings{chadhafl,author={Chadha, Mohak and Jindal, Anshul and Gerndt, Michael},title={Towards Federated Learning Using FaaS Fabric},year={2020},isbn={9781450382045},publisher={Association for Computing Machinery},address={New York, NY, USA},url={https://doi.org/10.1145/3429880.3430100},doi={10.1145/3429880.3430100},booktitle={Proceedings of the 2020 Sixth International Workshop on Serverless Computing},pages={49–54},numpages={6},keywords={Federated learning, Neural networks, FaaS, Serverless, FaaS platforms, Function-as-a-service},location={Delft, Netherlands},series={WoSC'20},bibtex_show={true},html={https://www.researchgate.net/profile/Anshul-Jindal-2/publication/346740625_Towards_Federated_Learning_using_FaaS_Fabric/links/5fd00998a6fdcc697bef60f5/Towards-Federated-Learning-using-FaaS-Fabric.pdf},abbr={WoSC@Middleware},slides={https://www.serverlesscomputing.org/wosc6/presentations/WoSC_2020_Presentation_P9.pdf},presentation={https://youtu.be/CjK4mevTTTc}}
HiPC
Extending SLURM for Dynamic Resource-Aware Adaptive Batch Scheduling
@inproceedings{chadhaextend,author={Chadha, Mohak and John, Jophin and Gerndt, Michael},booktitle={2020 IEEE 27th International Conference on High Performance Computing, Data, and Analytics (HiPC)},title={Extending SLURM for Dynamic Resource-Aware Adaptive Batch Scheduling},year={2020},volume={},number={},pages={223-232},doi={10.1109/HiPC50609.2020.00036},abbr={HiPC},bibtex_show={true},html={https://arxiv.org/pdf/2009.08289.pdf}}
2019
IPDPS
Modelling DVFS and UFS for Region-Based Energy Aware Tuning of HPC Applications
@inproceedings{chadhamodel,author={Chadha, Mohak and Gerndt, Michael},booktitle={2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)},title={Modelling DVFS and UFS for Region-Based Energy Aware Tuning of HPC Applications},year={2019},volume={},number={},pages={805-814},doi={10.1109/IPDPS.2019.00089},bibtex_show={true},html={https://arxiv.org/pdf/2105.09642.pdf},abbr={IPDPS}}
2017
HPPAC@IPDPS
A Statistical Approach to Power Estimation for x86 Processors
Chadha, Mohak,
Ilsche, Thomas,
Bielert, Mario,
and Nagel, Wolfgang E.
In 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
2017
@inproceedings{chadhastat,author={Chadha, Mohak and Ilsche, Thomas and Bielert, Mario and Nagel, Wolfgang E.},booktitle={2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)},title={A Statistical Approach to Power Estimation for x86 Processors},year={2017},volume={},number={},pages={1012-1019},doi={10.1109/IPDPSW.2017.98},abbr={HPPAC@IPDPS},html={https://tu-dresden.de/zih/forschung/ressourcen/dateien/projekte/haec/hppac_2017_authorversion.pdf?lang=en},bibtex_show={true}}
2016
IPCCC
Unified power and energy measurement API for HPC co-processors
Chadha, Mohak,
Srivastava, Abhishek,
and Sarkar, Santonu
In 2016 IEEE 35th International Performance Computing and Communications Conference (IPCCC)
2016
@inproceedings{chadha2016unified,title={Unified power and energy measurement API for HPC co-processors},author={Chadha, Mohak and Srivastava, Abhishek and Sarkar, Santonu},booktitle={2016 IEEE 35th International Performance Computing and Communications Conference (IPCCC)},pages={1--8},year={2016},organization={IEEE},abbr={IPCCC},html={https://ieeexplore.ieee.org/abstract/document/7820633},bibtex_show={true}}
Posters
2021
ICDCS
Poster: Function Delivery Network: Extending Serverless to Heterogeneous Computing
@inproceedings{poster,author={Jindal, Anshul and Chadha, Mohak and Gerndt, Michael and Frielinghaus, Julian and Podolskiy, Vladimir and Chen, Pengfei},booktitle={2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)},title={Poster: Function Delivery Network: Extending Serverless to Heterogeneous Computing},year={2021},volume={},number={},pages={1128-1129},doi={10.1109/ICDCS51616.2021.00120},abbr={ICDCS},bibtex_show={true},html={https://ieeexplore.ieee.org/document/9546403}}